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ABSTRACT

Motivation: Many biochemical networks involve reactions localized

on the cell membrane. This can give rise to spatial gradients of the

concentration of cytosolic species.Moreover, the number ofmembrane

molecules can be small and stochastic effects can become relevant.

Pathways usually consist of a complex interaction network and are

characterized by a large set of parameters. The inclusion of spatial

and stochastic effects is a major challenge in developing quantitative

and dynamic models of pathways.

Results: We have developed a particle-based spatial stochastic

method (GMP) to simulate biochemical networks in space, including

fluctuations from the diffusion of particles and reactions. Gradients

emerging from membrane reactions can be resolved. As case studies

for theGMPmethodwe used a simple gene expression systemand the

phosphoenolpyruvate:glucose phosphotransferase system pathway.

Availability: The source code for the GMP method is available at

http://www.science.uva.nl/research/scs/CellMath/GMP

Contact: jrodrigu@science.uva.nl

1 INTRODUCTION

There is much evidence that stochastic effects play a key role in

several biological processes, such as cell differentiation or gene

regulatory networks and signalling pathways. The fluctuations in

these phenomena are mostly due to biochemical processes involving

a relatively small number of molecules, and the relevance of these

fluctuations depends ultimately upon the underlying network archi-

tecture. Some networks components, such as switches, oscillators,

positive and negative feedbacks, or transcription gene networks

may display particular stochastic effects that cannot be captured

using deterministic methods. The analysis of such stochastic effects

can yield valuable additional insights. For example, it can help

explaining part of the observed fluctuations in wet experiments,

namely the internal fluctuations due to the chemical processes

[intrinsic noise as in Paulsson (2004)]. The main advantage of

stochastic results is the probability distribution of the steady

state, trajectory or limit cycle (Arkin et al., 1998; Doubrovinski
and Howard, 2005; Srivastava et al., 2002) as opposed to just the

average value obtained with deterministic methods. Although

effects are known to exist from theoretical analysis, only recently

several leading groups have measured intracellular molecular fluc-

tuations in vivo (Kettling et al., 1998; Arkin et al., 1998; Becskei
et al., 2005; Thattai and van Oudenaarden, 2004; Doubrovinski and
Howard, 2005; Pedraza and van Oudenaarden, 2005).

Many biochemical reactions do not occur in a completely homo-

geneous medium. For example, metabolic and signalling pathways

involve reactions between cytosolic and membrane-bound

molecules, causing an inhomogeneous spatial distribution of react-

ants. These membrane–cytosol reactions can only be sustained by

the diffusion of cytosolic species, leading to an emergence of

cytosolic gradients. The reaction rate and the diffusion coefficient

will determine whether such gradient is significant. It is also prob-

able that such gradients be unlikely for small prokaryotic cells but

otherwise relevant in larger cells as shown in Francke et al. (2003).
Partly-membrane pathways can be modelled in the continuum

and deterministic state space by partial differential equations (PDE).

These models treat membrane reactions as boundary conditions on

infinitely thin membranes. Alternatively a more ‘natural’ approach,

adopted in particle-based models, is to account for the position in

space of each particle (or a cluster of particles). Membrane-bound

particles are then restricted to the membrane surface, or an adjacent

sub-volume, and treated equally as cytosolic molecules with restric-

ted mobility into the membrane subvolume. We base our work on

this particular idea to tackle partly-membrane pathways.

Several models have been proposed to incorporate stochastic and

spatial effects in biochemical networks, as reviewed in Takahashi

et al. (2005). Currently there is no single model capable of effi-

ciently coping with the broad range of spatial, temporal and con-

centration scales commonly found in biochemical networks. For

instance, the highly accurate microscopic methods are too com-

putationally demanding to simulate full pathways, while macro-

scopic ODE models cannot cope with spatial and stochastic

phenomena. For this reason mesoscopic models may represent a

plausible alternative approach and a compromise between compu-

tational efficiency and spatial and stochastic accuracy. A common

approach for mesoscopic models is to tackle inhomogeneities, or

spatial localization of reactions, by discretizing space into smaller

homogeneous subvolumes. These subvolumes are considered to be

a well-stirred system for which efficient well-stirred reaction

methods can be used, either stochastic or deterministic (Weimar,

2002; Chopard et al., 1994; Stundzia and Lumsden, 1996; Baras and

Malek Mansour, 1996; Ander et al., 2004; Bormann, 2001; Hattne

et al., 2005).�To whom correspondence should be addressed.
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In this article we present a method to model biochemical net-

works which combines the advantages of stochastic simulation and

spatial discretization: the Gillespie-Multi-Particle method (GMP).

Such a model can capture, within a certain range, spatial patterns

and fluctuations due to diffusion and reactions. In contrast, models

assuming a well-stirred medium can only capture reactional fluc-

tuations. The GMP model is based on the discrete-in-space,

operator-split and particle-based paradigms. These methods gener-

ally use dimensionless particles located in the lattice sites; diffusion

takes place between lattice sites and reaction occurs locally in each

site. Particularly, GMP builds on the multiparticle lattice gas auto-

mata model developed by Chopard et al. (1994). GMP employs the

same diffusion process for particles, namely randomly distributing

them among the nearest neighbours. For reactions, however, instead

of Chopard’s combinatoric method, we use the stochastic simula-

tion algorithm (SSA) of Gillespie (1977). The separation of the

reaction and diffusion processes distinguishes GMP from non-

split models for the Reaction Diffusion Master Equation, where

both processes are interlaced, such as the Stundzia and Lumsden

(1996) approach. The core functionality of the Stundzia and

Lumsden (1996) approach is a modified Gillespie method in

which diffusion events for single particles are treated as a

monomolecular reaction (diffusion events also follow an exponen-

tial distribution). Thus both processes are interlaced in a non-

deterministic manner. In the GMP method we aim at reducing

the computational cost of non-split models caused by the extra

calculations of individual diffusion events. The reaction and diffu-

sion processes are executed independently of each other (operator-

split method) and the diffusion process is executed at predetermined

times. Thus, the species population change in each site is due to an

alternating reaction and diffusion process.

To test our method we first use a simple model of gene expression

as analysed by van Zon and ten Wolde (2005). It illustrates how

GMP performs in the regime where spatial fluctuations are import-

ant. Next, we apply the GMP method to a partially membrane

pathway, viz., the phosphoenolpyruvate:glucose phosphotrans-

ferase system in Escherichia coli illustrated in Table 2. This

case represents a real challenge for the method due to the complex-

ity of the reactions, the spatial confinement of reactants, number of

different species, and varying parameters. We validate the average

results against a PDE model of the PTS pathway described in Blom

and Peletier (2000) and used in Francke et al. (2003).

2 ALGORITHM

We combine the multiparticle method for diffusion (Chopard et al.,
1994) and the kinetic Monte Carlo method (Gillespie, 1977) in our

GMP algorithm. To tackle space we discretize the volume of the cell

into a cubical lattice with L3 sites (see Fig. 1 for an illustration of

the spatial discretization we use). Each lattice site holds a discrete

number of dimensionless, uniformly distributed particles. Con-

sequently, there is no need to account for the exact position of

individual particles. As a result of the spatial discretization, the

overall inhomogeneity of the system is limited by the coarseness

of the lattice. The geometry of the membrane is represented by the

lattice sites enclosing the cytosol (light boxes). These membrane

sites (dark boxes) also hold cytosolic molecules, enabling

membrane–cytosol reactions. To simulate the membrane as a

wall, we use reflective boundary conditions. Owing to spherical

symmetry, we also use pseudo-symmetric boundary conditions

on the edges of the cytosol.

An operator-split reaction–diffusion (RD) scheme alternates the

execution of each process at predetermined intervals of time (see

Algorithm 1). For each species S, its diffusion process will be

executed at times tS ¼ nStDS
, where nS is the iteration number,

and the diffusion step, tDS
, is given by

tDS
¼ 1

2d

l2

DS
‚ ð1Þ

with d the dimensionality of the system.

Since each species may have a different diffusion coefficient, the

next diffusion time is the minimum tS that is larger than the current

simulation time tsim. Note that more than one species (even with

different DS) can occasionally have equal tS. In this case all these

species are diffused. The current simulation time tsim is updated to

tS, and nS is incremented by one for the diffused species.

Algorithm 1 Operator-split, Reaction–Diffusion algorithm.

0- Initialize tS ¼ minftDS
g for all species S

1- tsim ¼ 0, nS ¼ 1 for all S
2- while tsim < tend do
3- while tsim < tS do
4- Reaction m in tR on every lattice site

5- Advance simulation time tsim ¼ tsim þ tR
6- Diffuse species for which tS ¼ tsim
7- Increment iteration nS for the diffused species

8- tS ¼ minftDS
· nSg for all S

The diffusion process is executed locally at every site. In this step

particles are distributed randomly with equal probability among the

Fig. 1. 2D slice representation of the spherical cell geometry, including the

membrane sites in dark grey and a possible distribution of particles. The

length of a site is l and the neighbourhood of a cytosolic site consists of

four sites. Reflective boundary conditions are used for sites on the edge of the

domain.
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six nearest neighbours (four are shown in Fig. 1 in black arrows).

Chopard et al. showed that this diffusion rule reproduces the

macroscopic diffusion equation in the limit of l ! 0, where l is

the lattice site’s side length. Note that for large numbers of particles

inside a lattice site it is not necessary to decide for a single particle

where to diffuse, since the number of particles moving to a neigh-

bouring site follows a normal distribution.

For the reaction process we use the SSA of Gillespie (1977),

which solves the chemical master equation for well-stirred systems.

This implies that the system is reaction limited at the scale of

the lattice site. Note that we cannot have more spatial resolution

than the lattice site size. Gillespie’s method advances the system by

executing the chemical reactions sequentially at reaction times tR.

The multivariate distribution PðtR‚mÞ1 for the time of next reaction

tR that is of type m is given by:

PðtR‚mÞ ¼
amexpð� a0tRÞ; 0 � tR <1‚

m ¼ 1‚ . . . ‚M‚

0; otherwise

8<
: ð2Þ

where am is called propensity function, with M the total

number of reaction channels and a0 ¼
PM

m¼1 am, where am ¼
km; n

A; nB/ðV;NAÞ; km is the reaction rate, nAi is the number of

particles in the site for species A, V is the site volume, and NA

Avogadro’s number. We obtain tR and m for a given species S
as follows:

tR ¼ 1/a0 lnð1/r1Þ and
Xm�1
i¼0

ai � a0r2 <
XM
i¼m

ai‚ ð3Þ

where r1 and r2 are uniformly distributed random numbers from the

interval [0, 1]. Then reaction m is effectuated and the simulation

time tsim is increased with tR.

Because of the operator-splitting, the reaction process executes

reaction only for the duration of a diffusion interval (whileP
tR < tDS

).

2.1 Choosing a lattice size

By adjusting the lattice size, l, GMP’s spatial resolution capabilities

range from those offered by spatially resolved particle methods to

well-stirred methods. However there is a limitation for the minimum

lattice size l. Despite the convergence of the diffusion process as

shown by Chopard et al. (1994), the reaction–diffusion process does
not converge for l! 0. In that limit no reactions can occur as the

probability of finding two particles in a site is zero. Approaching

this limit also implies that the maximum possible reaction rate

decreases. Thus, for a pair of reacting particles and a diffusion

limited process, there is a minimal lattice size lo ¼ 2s, where s

is the diameter of a particle. Note, however, that under this condition

GMP would act almost as Brownian dynamics with reaction. For

complex biochemical systems, in general we do not find purely

diffusion limited reactions, which allows us to take larger sub-

volumes that are considered to be well-stirred. A reasonable size

of the well-stirred subvolume is given by lrmfp, the reaction mean

free path2, which is the average distance traveled between two

reacting collisions (cf. also the discussion on the validity of

the reaction diffusion master equation in Baras and Malek

Mansour (1996)).

3 CASE STUDIES

We validate GMP against two problems that highlight two different

aspects of GMP’s capabilities. First, a generic gene expression

model to illustrate the effects of the lattice size on the variance

of the fluctuations. Second, the PTS pathway, which includes spa-

tially confined membrane-bound reactions resulting in the inhomo-

geneity of the system due to cytosolic gradients.

3.1 Gene expression

The generic model for gene expression, as analysed by van Zon and

ten Wolde (2005), enables us to study noise as caused by a low

number of molecules and diffusion limited reactions. In van Zon and

ten Wolde detailed continuous-in-space simulations are provided of

the system which we use to validate our GMPmethod and check our

reasoning to choose a proper lattice size.

The system we look at is a closed volume V of 1 mm3 with a DNA

binding site fixed in the centre surrounded by freely diffusing RNA

(RNAp) polymerase. Once the DNA-RNAp complex is formed with

association rate ka, it can either dissociate back to separate DNA and

polymerase (with rate kd) or a protein P can be produced with a

production rate kprod with subsequent complex dissociation. The

protein can further decay at the rate kdec. Obviously the single

protein production step in this model encompasses both transcrip-

tion and translation which in fact consist of many biochemical

reactions. Protein degradation is also simplified and treated as a

first-order reaction. For the chemical reaction scheme and the para-

meters we refer to Table 1.

For choosing our lattice size we use the reasoning developed

in Section 2.1. In van Zon and ten Wolde (2005) the size of

the particles is 5 nm. We therefore obtain for the minimum l

a value of lo ¼ 10 nm with L ¼ 100. The lrmfp corresponds

with L � 18.

3.2 The PTS pathway and parameter setting

To test our GMP method in a more complex biological scenario, we

have used the phosphoenolpyruvate:glucose phosphotransferase

system (PTS system), as illustrated in the figure in Table 2. The

PTS was chosen because of its moderate network complexity,

involving 17 species, fast and slow reactions, and especially because

of the membrane-cytosol reactions. The PTS is a group-transfer

pathway situated at the beginning of the glycolysis pathway. It

is present in many bacteria and it is involved in the uptake and

concomitant phosphorylation of external glucose that feeds the

glycolysis. A phosphoryl group derived from PEP is carried along

a series of bimolecular reactions to the membrane-bound IICB,

which is responsible for taking the external glucose and transferring

it into the cytoplasm. Table 2 summarizes the complete sequence of

reactions as in Francke et al. (2003). In that paper the kinetic para-

meters were obtained from Rohwer et al. (2000) and the diffusion

coefficients were based on measurements by Elowitz et al. (1999).
Bulk concentrations have been converted into numbers of

molecules using one-eighth of a sphere’s volume of 1 mm radius,

discretized in a lattice of L ¼ 20. Surface concentrations of

1P(t,m)dt is the probability that, given the state XS at time t, the next reaction

m will occur in the infinitesimal time interval (t þ t, t þ t þ dt).
2The reaction mean free path is defined as lrmfp ¼

�
htRiDAB

�
1/2, where htRi

is the mean reaction time given by 1/am, and DAB ¼ DA + DB is the mutual

diffusion coefficient.

Spatial stochastic modelling of the PTS pathway

1897



membrane-bound molecules require special consideration. We

assume that the concentration reported in Rohwer et al. (2000)
for IICB was calculated as if the membrane-bound molecules

were diluted in the cytosol and its concentration, 15 mmM, was

measured. According to this, the number of IICB molecules should

be 3100. Since the procedure of fitting IICB bulk concentration in

the original model by Rohwer does not clearly indicate the number

of membrane molecules, we have adjusted the number of IICB

molecules in such a way to approximate the steady state of

IIA · P · IICB and IICB · P · Glc. In addition, since we have to com-

pare surface concentrations and numbers of molecules, we scale

the surface concentrations of the PDE solution in such a way

that the initial IICB concentration matches the number of particles,

as is used in Fig. 2(c). We found that 2100 particles for IICB,

corresponding to an average of 4.3 particles per site, yield a

good approximation for IIA · P · IICB and IICB · P · Glc but a

less accurate approximation of IICB and IICB · P. Finally, external

Glc molecules are confined to membrane sites in the reported

concentration.

For the PTS system at steady state, the average value for lrmfp for

cytosolic reactions is 0.06 ± 0.05. Since all species must share the

same lattice size, L ¼ 20 is a reasonable size.

4 RESULTS

4.1 Gene expression

With the parameters given in Table 1, simulations of the simple

gene expression model yield an average level of protein P of 1032 ±

Table 1. Reaction scheme and parameters associated with the gene expression model

Initial

Reaction Rate Species Concentration Molecules Dif.coef

DNA+RNAp !ka DNA-RNAp 3· 109 M�1s�1 DNA 1 0

DNA+RNAp  kd DNA-RNAp 21.5 s�1 RNAp 30 nM 18 1 mm2 s�1

DNA-RNAp !
kprod

P+DNA+RNAp 89.55 s�1

P !kdec ; 0.04 s–1

Table 2. Reaction list and parameters associated to the PTS model illustrated below

Initial

Reaction Ratea Species Concentrationb Molecules Species Dif. coef.

EI + PEP !k1 EI · PEP 1960 EI 5 1577 EI, EI · P, EI · P · Pyr 197.8

EI + PEP  k�1 EI · PEP 480 000 HPr 50 15 766 EI · P · HPr 189.1

EI · PEP !k2 EI · P + Pyr 108 000 IIA 40 12 613 HPr, HPr · P 378.0

EI · PEP  k�2 EI · P + Pyr 294 IICB 3 3100� HPr · P · IIA 262.1

HPr + EI · P !k3 HPr · P · EI 14 000 PEP 2800 882 890 IIA, IIA · P 300

HPr + EI · P  k�3 HPr · P · EI 14 000 Pyr 900 283 780 PEP, Pyr, Glc 18 000

HPr · P · EI !k4 HPr · P + EI 84 000 Glc 500 70 767 all IICB 0

HPr · P · EI  k�4 HPr · P + EI 3360 Glc · P 50 15 766

IIA + HPr · P !k5 IIA · P · HPr 21 960

Glc 6 P

IIA.Glc

IIA.Glc.P

EI

EI.P

PEP

Pyr

Glc

IICB.Glc

IICB.Glc.P

HPr

HPr.P

Illustration of the PTS system for E.coli. IICB molecules are bounded to the membrane.

For the uptake of Glucose, a phosphoryl group is transported from cytosolic PEP to the

membrane-bound protein IICB via the cytosolic enzymes HPr and IIA. Joined arrows

indicate the formation of a compound.

IIA + HPr · P  k�5 IIA · P · HPr 21 960

IIA · P · HPr !k6 IIA · P + HPr 4392

IIA · PHP · r  k�6 IIA · P + HPr 3384

IICB + IIA · P !k7 IICB · P · IIA 880

IICB + IIA · P  k�7 IICB · P · IIA 880

IICB · P · IIA !k8 IICB · P + IIA 2640

IICB · P · IIA  k�8 IICB · P + IIA 960

Glc + IICB · P !k9 Glc · P · IICB 260

Glc + IICB · P  k�9 Glc · P · IICB 389

Glc · P · IICB !k10 Glc · P + IICB 4800

Glc · P · IICB  k�10 Glc · P + IICB 5.4 · 10�3

aBimolecular reaction rates are given in mM�1 min�1, and monomolecular in min�1.
bDiffusion coefficients are given in mm2 min�1.
cInitial concentrations for cytosolic species are given in mm, the surface concentration for IICB is given in mm, mm
These parameters were taken from the spatial PDE model discussed in Francke et al., (2003), converting concentrations to number of molecules. Special consideration is put on the

conversion of themembrane-bound concentration�. This parameter is adjusted to the value 2100 to obtain a better approximation of the PDE solution and is used for the results reported

here.
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64, which is consistent with GFRD. However, the noise h in the

levels of protein expression varies (see Table 3). We know that

GMP converges to Gillespie for L ¼ 1, and we observe the noise h

converging to the value given by Gillespie. Using a lattice size

which corresponds approximately with the reaction mean free

path (L ¼ 18), we obtain a noise level close to the GFRD reference

value given by van Zon and ten Wolde (2005) using GFRD. By

increasing the number of sites we obtain a better approximation, a

noise level within 15% of the GFRD value, at the cost of more

computations. However, L cannot be increased indefinitely since we

then artificially reduce the probability of particle encounters and

thus reduce the frequency of reactive collisions.

4.2 PTS Pathway

We have applied the GMP method to model the phosphoenolpyr-

uvate:glucose phosphotransferase system (PTS) system as indicated

in section 3.2. A first check of the validity of our method consists of

looking at the System’s Mass Evolution in Time (SMET) which

shows the total number of particles present in the system over time

regardless of their position. In Figure 2 we show the SMET of

molecules, showing a good agreement with the reference

solution of the PDE model by Blom and Peletier (2000). These

results are a direct consequence of the initial decision to adjust

the number of molecules of IICB to match the IIA · P · IICB steady

state. Nevertheless, we note in Figure 2a, a very good agreement of

the EI-related molecules. In Figure 2b, despite a good initial agree-

ment (t < 0.005 min), the total number of molecules starts to diverge,

and settling at levels �6% for HPr species, and 20% for IIA · P.

Finally, the level of the phosphorylated IICB · P, is four times as

high as the PDE solution. However, in absolute numbers, the extra

� 100 molecules in IICB · P, seem to be lacking in IICB.

In Figure 3 we show the radial gradients, at steady state (tsim ¼
0.005 min) for some enzymes. To obtain the gradient along the

radius we average the number of particles over all sites with the

centre in the range [r � 0.5/L, r þ 0.5/L). We then average again

over 50 trials of the same systems with uniform random distribu-

ted particles. Therefore, results near the membrane will always

contain far more points than those near the centre, so the average

near the centre may show a larger deviation from the real mean. In

Figure 3a, we observe two different behaviours of the obtained

gradients: the phosphorylated enzymes HPr show only a difference

in the gradient higher near the membrane (10%), whereas for IIA · P

its gradient is upward shifted along the whole radius (30% near the

membrane and 10% near the centre of the cell). These differences

are linked with those observed in the SMET in Figure 2. Note, that

owing to the spherical geometry, a slight divergence near the

membrane has a larger contribution to the SMET difference than

a divergence near the centre. Turning to the three basic enzymes

shown in Figure 3b, we find for HPr a relative concentration

difference between the centre and the membrane of the cell of

66% in both the PDE solution and the GMP averaged solution.

However, in absolute value, GMP’s solution for the radial gradient

is consistently 16% lower than the PDE solution. Both the

gradients for IIA and EI show an excellent agreement. Nevertheless,

some of the molecules involved in their reactions, such as IIA · P,

IICB · P and HPr · P, show a noticeable difference as seen in

Figure 2.

5 DISCUSSION

We have developed the GMP reaction–diffusion method along

the lines of other spatial stochastic kinetic model solvers, such as

Stundzia and Lumsden (1996), Ander et al. (2004), Bormann
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Fig. 2. System Mass Evolution in Time (SMET) graph for the PTS

pathway with parameters shown in Table 2 and a cell’s radius of 1 mm. Only

one trial is shown here for the GMP result. EI-related enzymes show a very

good agreement between the GMP result and the PDE solution. The mem-

brane concentration of IICB enzyme in subfigure (c) was scaled to match the

number of molecules at t ¼ 1e-5.
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(2001), Hattne et al., (2005). For GMP, the distinguishing feature is

the separation of the reaction and diffusion processes at the scale of

a lattice site. The consequent locality of the operations results in a

fast algorithm. Since at the lattice site scale no spatial information

of particles is used, GMP is very suitable for parallel computing.

Such computational power will be required when simulation

studies of whole-cell processes become necessary as experimental

biology advances. GMP can cope with both reaction limited and

diffusion limited problems, as well as with confined distributions

of chemicals in biological systems. For complex biochemical

networks a trade-off in choosing the lattice size is necessary,

since different reaction rates and diffusion coefficients result

in different optimal lattice sizes. Consequently, some accuracy,

compared with (hard-sphere) particle models, is lost in order to

gain computational speed. Nevertheless, the results can be used

to guide experimentalists since such loss can be controlled and

minimized.

The GMP method takes into account the principal sources of

fluctuations, but the class of lattice-discrete methods, to which

GMP belongs, smoothes out some noise if the lattice size is too

large, because of the use of Gillespie as a reaction method (cf.

Table 3). Note, however, that lrmfp is a safe lattice size, which is

valid for small concentrations. For larger concentrations lrmfp

decreases and in that case the slope of the gradients and the

error we allow determine the optimal lattice size. For more complex

biochemical systems there is no single optimal lattice size. In those

cases an average lrmfp can be used as an orientative value, as we did

for the PTS case in Section 4.2.

For the PTS system, the main focus was on the reactions

between membrane and cytosolic species, as well as on the gradi-

ents that may arise due to the spatial localization of the membrane-

bound reactions and the diffusion of cytosolic molecules.

Owing to the relatively high concentrations fluctuations are not

significant. As shown in Figure 3, only the species related to

HPr and IIA show a significant gradient, in contrast to a flat

gradient by EI which has the lowest concentration. This case illus-

trates that spatial inhomogeneities do not depend on the concentra-

tion levels, but on the whole pathway architecture, consisting

of reaction rates, diffusion coefficients, spatial restrictions and

dependencies.

Having tuned the initial number of membrane-bound molecules

of IICB, we obtained a good approximation of IIA · P · IICB and

IIA, but IICB, IICB · P and IIA · P differ from the PDE solu-

tion (see Figs 2 and 3). This difference is propagated down the

pathway irregularly. For instance, it relatively strongly affects

the gradient of HPr, though not in absolute sense (< 2e-7mM)

(see Fig. 3b) and not of IIA. The reaction procedure between

bulk (cytosol) and surface (membrane) molecules, which is

approximated by a bulk to bulk reaction in a small volume, remains

a topic for further research. Note, that in the GMP method we have

to use a constant number of particles rather than a constant

concentration for the membrane-bound molecules as used in

PDE models. Although this is a more realistic representation

of the underlying biological process and avoids the arbitrary

use of concentrations of membrane-bound molecules, this intro-

duces a practical difficulty, since this number will usually be

unknown. In PDE models this concentration is estimated from

the bulk concentration, which does not necessarily provide a correct

estimation.

The GMP method can be easily extended to include diffusion

over the membrane of membrane-bound particles and the effect of

clusters of membrane-bound particles on a biochemical network can

be studied. Other future aims are to improve the geometrical rep-

resentation of membranes and the particle-based representation of

cytosol-membrane reactions, and to extend the analysis of the

choice of a proper lattice size.
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Fig. 3. Profile gradients along the radius of a 1/8th of an sphere for the

PTS system. Lines without glyphs are the solution of the PDE model in

Blom and Peletier (2000). Each point is the average of all sites with centre

in [r� 0.5/L, rþ 0.5/L], and then averaged again over 50 trials. Note the good

agreement of IIA, a consequence of the tuning of IICB molecules to match

IIA · P · IICB as seen in Figure 2c. EI has no significant gradient, while HPr

differs by�15% from the value predicted by the PDE model. The first point

near the centre shows a large deviation because it is only the average of one

site and 50 trials.

Table 3. Measurements of noise for the gene expression using GMP with

various lattice sizes L

L Gillespie 5 10 20 30 50 GFRD

h 0.028 0.047 0.039 0.11 0.12 0.17 0.14

Initial conditions and parameters are given in Table 1. The optimal L corresponding to

the reaction mean free path is 18.
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